Single-file diffusion in an interval: First passage properties
نویسندگان
چکیده
منابع مشابه
First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-...
متن کاملMacroscopic fluctuation theory and first-passage properties of surface diffusion.
We investigate nonequilibrium fluctuations of a solid surface governed by the stochastic Mullins-Herring equation with conserved noise. This equation describes surface diffusion of adatoms accompanied by their exchange between the surface and the bulk of the solid, when desorption of adatoms is negligible. Previous works dealt with dynamic scaling behavior of the fluctuating interface. Here we ...
متن کاملFirst Passage Time Distribution for Anomalous Diffusion
We study the first passage time (FPT) problem in Levy type of anomalous diffusion. Using the recently formulated fractional Fokker-Planck equation, we obtain an analytic expression for the FPT distribution which, in the large passage time limit, is characterized by a universal power law. Contrasting this power law with the asymptotic FPT distribution from another type of anomalous diffusion exe...
متن کاملInfinitely fast diffusion in single-file systems.
We have used dynamic Monte Carlo(DMC) methods and analytical techniques to analyze single-file systems for which diffusion is infinitely fast. We have simplified the master equation removing the fast reactions, and we have introduced a DMC algorithm for infinitely fast diffusion. The DMC method for fast diffusion give similar results as the standard DMC with high diffusion rates. We have invest...
متن کاملSingle-file diffusion in a box.
We study diffusion of (fluorescently) tagged hard-core interacting particles of finite size in a finite one-dimensional system. We find an exact analytical expression for the tagged particle probability density function using a Bethe ansatz, from which the mean square displacement is calculated. The analysis shows the existence of three regimes of drastically different behavior for short, inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2013
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4801326